Skip to main content

Subset Sum Problem - Medium


Problem : Given a set of integers A, find out if there is a subset of A which add up to a particular integer K.

Formally called the Subset Sum Problem, we are given an NP-Complete problem. To solve this, we have to exhaustively search every subset and verify if they add up to an integer K.

Let's begin with a Brute force DFS search, we're going to construct subsets incrementally until the sum exceeds K. The elements are assumed sorted in the increasing order.


So we perform a DFS trying to perform every combination of the elements in the set. The recursive function either will include an element in the sum or exclude it. The guard prunes off DFS paths that exceed the sum required.

There is an efficient method for this, using Dynamic Programming. Essentially, we start with a single element, add the next element together to get the new sums possible. These new sums will be the input for the next iteration. I'll explain with an example, say we have {a,b,c}


  • You start with a set, lets call it partial_sums = {0}. For each element in the partial_sums we add a to the set. So after one iteration we have {0,0+a} ie {0,a}
  • Now for b, repeat the procedure. This gives us partial_sums =  {0,a,b,a+b}
  • Finally, c gives us {0,a,b,c,a+c,b+c,a+b+c}
  • Note : if any sum exceeds K we don't need to add it to the set (assuming the initial set was sorted, since the sum can only increase.)
Here's the solution implemented.


Here's the complete gist

Comments

Popular posts from this blog

Find Increasing Triplet Subsequence - Medium

Problem - Given an integer array A[1..n], find an instance of i,j,k where 0 < i < j < k <= n and A[i] < A[j] < A[k]. Let's start with the obvious solution, bruteforce every three element combination until we find a solution. Let's try to reduce this by searching left and right for each element, we search left for an element smaller than the current one, towards the right an element greater than the current one. When we find an element that has both such elements, we found the solution. The complexity of this solution is O(n^2). To reduce this even further, One can simply apply the longest increasing subsequence algorithm and break when we get an LIS of length 3. But the best algorithm that can find an LIS is O(nlogn) with O( n ) space . An O(nlogn) algorithm seems like an overkill! Can this be done in linear time? The Algorithm: We iterate over the array and keep track of two things. The minimum value iterated over (min) The minimum increa...

Shortest Interval in k-sorted list - Hard

Given k-sorted array, find the minimum interval such that there is at least one element from each array within the interval. Eg. [1,10,14],[2,5,10],[3,40,50]. Output : 1-3 To solve this problem, we perform a k-way merge as described here . At each point of 'popping' an element from an array. We keep track of the minimum and maximum head element (the first element) from all the k-lists. The minimum and maximum will obviously contain the rest of the header elements of the k-arrays. As we keep doing this, we find the smallest interval (max - min). That will be our solution. Here's a pictorial working of the algorithm. And here's the Python code. Time Complexity : O(nlogk)

The 2 Missing Duplicate Numbers - Medium

This is a slightly trickier version of The Missing Duplicate Number . Instead of one single missing number, we have 2. Problem : Given an array of Integers. Each number is repeated even number of times. Except 2 numbers which occur odd number of times. Find the two numbers Ex. [1,2,3,1,2,3,4,5] The Output should be 4,5. The naive solution is similar to the previous solution. Use a hash table to keep track of the frequencies and find the elements that occur an odd number of times. The algorithm has a Time and Space Complexity of O(n). Say those two required numbers are a and b If you remember the previous post, we used the XOR over all the elements to find the required element. If we do the same here, we get a value xor which is actually a ^ b. So how can we use this? We know that a and b are different, so their xor is not zero. Infact their XOR value has its bit set for all its dissimilar bits in both a and b. (eg.  1101 ^ 0110 = 0011). It's important to notice ...