Skip to main content

Dijkstra's algorithm - Part 2 - Tutorial


For Part 2 of the series, we'll be developing a Priority Queue implemented using a Heap . Continuing from Part 1, we'll be using Python for the implementation.

Fortunately, Python has a PriorityQueue class in the `queue` module. It's more than enough for our purposes, but the Queue module was designed thread safe, so there is a small overhead that comes with it. The Priority Queue is a Minimum Priority Queue by default, it takes in tuples which are compared together to determine their position in the queue. For those unfamiliar with tuple comparison in Python, it works something like this.

>>> (1,2) < (3,4)
True
>>> (1,2) < (1,3)
True
>>> (1,2) < (1,1)
False
>>> (1,2) < (1,2,3)
True
>>> (1,2,3,4) < (1,2,3)
False

The first non equal element  of the both tuples determine the output of the comparison operation. So say you have a bunch of Tasks Ti with Priorities Pi, then we push (Pi, Ti) into the queue, the Queue will automatically order it such that the first element popped will be the one with the lowest priority value.

Here's an example showing this in Action.
Now, what if we wanted the priority queue to work in the reverse order (ie, Largest Value has the higher Priority)? Well, there isn't any feature provided for this by the module, but we can do a clever little hack, observe when we negate the priority the output of the comparison operation flips. Therefore, For a Maximum Priority Queue, simply insert (- Pi, Ti)....and presto, now the elements are ordered by decreasing order of priority.

For the sake of learning, we'll implement our own Priority Queue. Using a heap for a backend implementation. Python comes with the heapq module. The heapq module lets us use a list as a heap, it has the heappush and heappop functions push an element onto a heap. The comparison of the elements work as  before with the Priority Queue.

Here's the class I wrote, it has a priority-tie-breaking mechanism. I simply add a counter as the second element to the tuple, this is essential for two things. One, when two elements have the same priority, the one inserted first will be popped first. Second, if we don't add this, then we'll have to make the data-elements comparable otherwise python will attempt to compare 2 elements (possibly non-comparable) with 2 equal priorities. In order to avoid this, we introduce the counter. So the Tuple Comparison will be resolved at the counter itself. Also, I've abstracted the min/max priority by having the pqueue class take care of negating the priorities. Far more convenient in my opinion.

Here's the complete source code.

We now have the essential tools for implementing our Dijkstra's Shortest Path algorithm. Until next time...

Comments

Popular posts from this blog

Find Increasing Triplet Subsequence - Medium

Problem - Given an integer array A[1..n], find an instance of i,j,k where 0 < i < j < k <= n and A[i] < A[j] < A[k]. Let's start with the obvious solution, bruteforce every three element combination until we find a solution. Let's try to reduce this by searching left and right for each element, we search left for an element smaller than the current one, towards the right an element greater than the current one. When we find an element that has both such elements, we found the solution. The complexity of this solution is O(n^2). To reduce this even further, One can simply apply the longest increasing subsequence algorithm and break when we get an LIS of length 3. But the best algorithm that can find an LIS is O(nlogn) with O( n ) space . An O(nlogn) algorithm seems like an overkill! Can this be done in linear time? The Algorithm: We iterate over the array and keep track of two things. The minimum value iterated over (min) The minimum increa...

Shortest Interval in k-sorted list - Hard

Given k-sorted array, find the minimum interval such that there is at least one element from each array within the interval. Eg. [1,10,14],[2,5,10],[3,40,50]. Output : 1-3 To solve this problem, we perform a k-way merge as described here . At each point of 'popping' an element from an array. We keep track of the minimum and maximum head element (the first element) from all the k-lists. The minimum and maximum will obviously contain the rest of the header elements of the k-arrays. As we keep doing this, we find the smallest interval (max - min). That will be our solution. Here's a pictorial working of the algorithm. And here's the Python code. Time Complexity : O(nlogk)

The 2 Missing Duplicate Numbers - Medium

This is a slightly trickier version of The Missing Duplicate Number . Instead of one single missing number, we have 2. Problem : Given an array of Integers. Each number is repeated even number of times. Except 2 numbers which occur odd number of times. Find the two numbers Ex. [1,2,3,1,2,3,4,5] The Output should be 4,5. The naive solution is similar to the previous solution. Use a hash table to keep track of the frequencies and find the elements that occur an odd number of times. The algorithm has a Time and Space Complexity of O(n). Say those two required numbers are a and b If you remember the previous post, we used the XOR over all the elements to find the required element. If we do the same here, we get a value xor which is actually a ^ b. So how can we use this? We know that a and b are different, so their xor is not zero. Infact their XOR value has its bit set for all its dissimilar bits in both a and b. (eg.  1101 ^ 0110 = 0011). It's important to notice ...