Skip to main content

The Missing Number - Easy

For my first post, let's start with an easy one. It's a popular question among interviewers and you prolly have heard about this one. Never the less, let's solve it, for old times sake. :)

Problem : Given an Array of integers of size N. The array contains all the numbers from 1 to N in arbitrary order. But one number (say X) has been replaced with 0. Find the missing number in the most efficient way possible.

Solution:

Before we get to the solution, we'll build a test case using the following Python Snippet.

The Naive method is an O(n^2) algorithm, where we perform a linear search (ie O(n) ) for each element 1-N.
For small values of N, this is perfectly fine but can we do better?

Of course, with a small bit of help from 8th grade maths. Hopefully, you remember that,
1+2+3....+n = n (n+1)/2
So how does that help? Say we didn't have any missing number and the problem was simply to sum all the elements of the array? Since we know the array contains all the values of the range [1,N] we know the sum will be N * (N + 1) /2 

If we replaced one arbitrary element with 0, the expected sum will be (N * (N + 1) / 2) - X  
But we can calculate the Expected sum by iterating through the array and adding all the elements, so we finally have
X = (N * (N+1) / 2) - sum(array)
Here's the Python solution
Now, the inbuilt sum() function in Python is linear.

This solution is perfectly fine for Python, but if we translate this to an High Level Language (HLL) like Java or C, you'll end up with this.
Can you spot the problem with the above snippet? How will you solve it? Answer during the next update.

Update: Python supports arbitrary precision numbers by default, unlike Java. Therefore the above code might fail for Large values of N. More specifically N > sqrt(Integer.MAX_VALUE). How do we solve it? Use a bigger datatype (long,BigInteger).

Alternate Solutions:

Using a Hash Table/Bit Array: This solution is quite obvious. Have a Bit Array of size N, Iterate over the array and mark true the index of the bit array for each value in the array. Find the only element that is false.
Note: If there were multiple numbers missing, this will find all of them. So this is probably the best method for multiple missing numbers. We'll discuss other methods in the future.
Space Complexity : O(n/8), Time : O(n)

The XOR method : This is pretty smart method and doesn't even have the possibility of Integer Overflows. The idea is we can determine (1^2^3....^N) in O(1). (see below) Say P = (1 ^ 2 ^ .... ^ N), we then Xor all the values in the Array which will be Q = (1^2^...(X-1)^(X+1)^....N)
Our missing X = P ^ Q

To find the the Xor result of the range 1 to N, we observe the following pattern.

N = 0, P= 0
1,1
2,3
3,0
4,4
.....
84,84
85,1
86,87
87,0
88,88


The pattern repeats with a period of 4,

  1. When N is divisible by 4, the Xored value is N itself
  2. When N % 4 is 1, the Xored value is 1
  3. When N % 4 is 2, the Xored value is N+1
  4. When N % 4 is 3, the Xored value is 0
Here's a small python snippet for the same. Time Complexity : O(n)

You can find the entire source code here.

Comments

Popular posts from this blog

Find Increasing Triplet Subsequence - Medium

Problem - Given an integer array A[1..n], find an instance of i,j,k where 0 < i < j < k <= n and A[i] < A[j] < A[k]. Let's start with the obvious solution, bruteforce every three element combination until we find a solution. Let's try to reduce this by searching left and right for each element, we search left for an element smaller than the current one, towards the right an element greater than the current one. When we find an element that has both such elements, we found the solution. The complexity of this solution is O(n^2). To reduce this even further, One can simply apply the longest increasing subsequence algorithm and break when we get an LIS of length 3. But the best algorithm that can find an LIS is O(nlogn) with O( n ) space . An O(nlogn) algorithm seems like an overkill! Can this be done in linear time? The Algorithm: We iterate over the array and keep track of two things. The minimum value iterated over (min) The minimum increa...

QuickSelect - Medium

Problem : Given an unsorted array, find the kth smallest element. The problem is called the Selection problem . It's been intensively studied and has a couple of very interesting algorithms that do the job. I'll be  describing an algorithm called QuickSelect . The algorithm derives its name from QuickSort. You will probably recognise that most of the code directly borrows from QuickSort. The only difference being there is a single recursive call rather than 2 in QuickSort. The naive solution is obvious, simply sort the array `O(nlogn)` and return the kth element. Infact, you can partially sort it and use the Selection sort to get the solution in `O(nk)` An interesting side effect of finding the kth smallest element is you end up finding the k smallest elements. This also effectively gives you (n - k) largest elements in the array as well. These elements are not in any particular order though. The version I'm using uses a random pivot selection, this part of the al...

Shortest Interval in k-sorted list - Hard

Given k-sorted array, find the minimum interval such that there is at least one element from each array within the interval. Eg. [1,10,14],[2,5,10],[3,40,50]. Output : 1-3 To solve this problem, we perform a k-way merge as described here . At each point of 'popping' an element from an array. We keep track of the minimum and maximum head element (the first element) from all the k-lists. The minimum and maximum will obviously contain the rest of the header elements of the k-arrays. As we keep doing this, we find the smallest interval (max - min). That will be our solution. Here's a pictorial working of the algorithm. And here's the Python code. Time Complexity : O(nlogk)