Skip to main content

Stack with Min() Operation - Easy

Problem : Implement a stack with push() , pop() and a min() (which returns the minimum element in the stack). All operations should be O(1).
Another popular question, I've searched around a lot came across many answers, but only one had completeness. It's important to note that with the stack you don't have random access to the contents of the stack when implementing your solution.

The solution I'm describing involves using 2 stacks, one is to store the data elements themselves (mainstack) and the other to store minimum values, which i'll refer to as minstack. Now we can have 2 parallel stacks where we push and pop on the minstack along with the mainstack, keeping track of the minimum value of course. But we can optimize this further. We only need to push values on the minimum stack only when you push a value on the main stack that is less than or equal to the current top element of the minstack.
Here's are the two stacks after pushing 67,44,20,77,99,12 in that order.



When an element is poped, you check if the value on the minstack top is the same as the one on the mainstack, if it is we pop it from the minstack as well. Here's me poping 12.


Let's get to the code now. I pick Java as my weapon of choice.

Complete Code can be found here. It's important to note that we can implement both max() and min() for the same stack. You'll need one more stack for keeping track of the maximum element. I'll leave that as an exercise for you. Cheers!

Comments

Popular posts from this blog

Find Increasing Triplet Subsequence - Medium

Problem - Given an integer array A[1..n], find an instance of i,j,k where 0 < i < j < k <= n and A[i] < A[j] < A[k]. Let's start with the obvious solution, bruteforce every three element combination until we find a solution. Let's try to reduce this by searching left and right for each element, we search left for an element smaller than the current one, towards the right an element greater than the current one. When we find an element that has both such elements, we found the solution. The complexity of this solution is O(n^2). To reduce this even further, One can simply apply the longest increasing subsequence algorithm and break when we get an LIS of length 3. But the best algorithm that can find an LIS is O(nlogn) with O( n ) space . An O(nlogn) algorithm seems like an overkill! Can this be done in linear time? The Algorithm: We iterate over the array and keep track of two things. The minimum value iterated over (min) The minimum increa...

QuickSelect - Medium

Problem : Given an unsorted array, find the kth smallest element. The problem is called the Selection problem . It's been intensively studied and has a couple of very interesting algorithms that do the job. I'll be  describing an algorithm called QuickSelect . The algorithm derives its name from QuickSort. You will probably recognise that most of the code directly borrows from QuickSort. The only difference being there is a single recursive call rather than 2 in QuickSort. The naive solution is obvious, simply sort the array `O(nlogn)` and return the kth element. Infact, you can partially sort it and use the Selection sort to get the solution in `O(nk)` An interesting side effect of finding the kth smallest element is you end up finding the k smallest elements. This also effectively gives you (n - k) largest elements in the array as well. These elements are not in any particular order though. The version I'm using uses a random pivot selection, this part of the al...

Shortest Interval in k-sorted list - Hard

Given k-sorted array, find the minimum interval such that there is at least one element from each array within the interval. Eg. [1,10,14],[2,5,10],[3,40,50]. Output : 1-3 To solve this problem, we perform a k-way merge as described here . At each point of 'popping' an element from an array. We keep track of the minimum and maximum head element (the first element) from all the k-lists. The minimum and maximum will obviously contain the rest of the header elements of the k-arrays. As we keep doing this, we find the smallest interval (max - min). That will be our solution. Here's a pictorial working of the algorithm. And here's the Python code. Time Complexity : O(nlogk)