Skip to main content

Longest Increasing Subsequence - Hard


Problem - Given an array of integers. Find the longest increasing subsequence in the array. Eg. [42, 91, 46, 73, 75, 91, 95]. The LIS for this array is 6 which is [42,46,73,75,91,95]. Note: Subsequence does not require the elements to be contiguous

As always, we begin with our naive solution which is a DFS/Bruteforce search trying every possible combination until we get the longest sequence. This is simply exhaustive and will explode on bigger arrays. Time Complexity : O(2^n) ~ Exponential

def longest_increasing_subsequence_dfs(lst):
lis_seq = []
sz = len(lst)
def lis(index,seq):
if len(seq) + (sz - index) < len(lis_seq): return #prune the rest.
for i in xrange(index,sz):
if seq[-1] < lst[i]:
seq.append(lst[i])
lis(i+1,seq)
seq.pop()
else:
if len(seq) > len(lis_seq):
l = lis_seq
l[:] = seq
for i in xrange(sz):
lis(i + 1,[lst[i]])
return lis_seq
Now, If you notice we repeatedly try a prefix subsequence repeatedly. This tells us, the problem is a good candidate for a dynamic programming algorithm.

We define lis[0...L], where L is the length of the array. We define lis[i] as the length of longest increasing subsequence that ends at i. 


  • lis[0] = 1 { trivial since, the longest increasing sequence that ends at the start of the array contains just the first element, also true for the arr[i] where arr[i] is the smaller than preceding elements}
  • lis[i] = 1 + max( lis[j = 0..i-1] where A[i] > A[j] ) 
To calculate lis[i], we have a new element A[i] which can be part of a new LIS by appending to an existing LIS ending at j where j varies from 0 to i - 1 if and only if, A[i] > A[j]. If there is no such element, ie A[i] is smaller than A[0..i-1] therefore, lis[i] = 1
To build back the LIS, we also store a prev[] array, which holds the preceding index of the previous member of the LIS. The prev for the first element will be marked as negative to indicate termination. We build the LIS backwards and finally reverse the sequence.

Time Complexity : O(n^2)

def longest_increasing_subsequence_dp(lst):
if not lst: return None
lis_len = []
prev = []
for i,v in enumerate(lst):
mx = 0
mxi = -1
for j in xrange(i):
if v > lst[j] and mx < lis_len[j]: #can v extend the current longest increasing subsequence?
mx = lis_len[j]
mxi = j
lis_len.append(1 + mx)
prev.append(mxi)
index = max(xrange(len(lst)),key=lis_len.__getitem__)
lis = []
while index >= 0: # go backwards till index < 0
lis.append(lst[index])
index = prev[index]
lis.reverse()
return lis

I'll end this post here, but I will follow up with a O(nlogn) method which can be used to solve the problem as well. I will also describe the applications and some problems you can solve using LIS. Until next time.

Comments

Popular posts from this blog

Find Increasing Triplet Subsequence - Medium

Problem - Given an integer array A[1..n], find an instance of i,j,k where 0 < i < j < k <= n and A[i] < A[j] < A[k]. Let's start with the obvious solution, bruteforce every three element combination until we find a solution. Let's try to reduce this by searching left and right for each element, we search left for an element smaller than the current one, towards the right an element greater than the current one. When we find an element that has both such elements, we found the solution. The complexity of this solution is O(n^2). To reduce this even further, One can simply apply the longest increasing subsequence algorithm and break when we get an LIS of length 3. But the best algorithm that can find an LIS is O(nlogn) with O( n ) space . An O(nlogn) algorithm seems like an overkill! Can this be done in linear time? The Algorithm: We iterate over the array and keep track of two things. The minimum value iterated over (min) The minimum increa...

Merge k-sorted lists - Medium

Problem - Given k-sorted lists, merge them into a single sorted list. A daft way of doing this would be to copy all the list into a new array and sorting the new array. ie O(n log(n)) The naive method would be to simply perform k-way merge similar to the auxiliary method in Merge Sort. But that is reduces the problem to a minimum selection from a list of k-elements. The Complexity of this algorithm is an abysmal O(nk). Here's how it looks in Python. We maintain an additional array called Index[1..k] to maintain the head of each list. We improve upon this by optimizing the minimum selection process by using a familiar data structure, the Heap! Using a MinHeap, we extract the minimum element from a list and then push the next element from the same list into the heap, until all the list get exhausted. This reduces the Time complexity to O(nlogk) since for each element we perform O(logk) operations on the heap. An important implementation detail is we need to keep track ...

3SUM - Hard

Problem - Given an Array of integers, A. Find out if there exists a triple (i,j,k) such that A[i] + A[j] + A[k] == 0. The 3SUM  problem is very similar to the 2SUM  problem in many aspects. The solutions I'll be discussing are also very similar. I highly recommend you read the previous post first, since I'll explain only the differences in the algorithm from the previous post. Let's begin, We start with the naive algorithm. An O(n^3) solution with 3 nested loops each checking if the sum of the triple is 0. Since O(n^3) is the higher order term, we can sort the array in O(nlogn) and add a guard at the nested loops to prune of parts of the arrays. But the complexity still remains O(n^3). The code is pretty simple and similar to the naive algorithm of 2SUM. Moving on, we'll do the same thing we did in 2SUM, replace the inner-most linear search with a binary search. The Complexity now drops to O(n^2 logn) Now, the hash table method, this is strictly not ...