Skip to main content

Word Ladders - Medium


Word ladder is a word game invented by Lewis Carroll. A word ladder puzzle begins with two words, and to solve the puzzle one must find a chain of other words to link the two, in which two adjacent words (that is, words in successive steps) differ by one letter. Eg. SPORT <-> SHORT
Source: Wikipedia

If you've followed my previous Dijkstra's Shortest Path Algorithm Tutorial, you'll be able to solve this challenge with minimum effort.

Essentially, we create a graph where each word is a vertex and there exists an edge if two words differ by a single character. To find the word ladder is basically running any shortest path algorithm. You could also use a Breadth First Search.

Some important observations

  • The length of the source and destination words must be the same for a path to exist.
  • The path from source to destination  can only contain words of the same length. So we can prune off the rest of the dictionary.
  • The graph is undirected.
Here's my implementation, it uses the modules from the tutorial.



To run the program, "wordladder.py SOURCE DESTINATION < dict.txt"
For eg.

C:\>wordladder.py BOX TEN < words.txt
(4, ['BOX', 'BOD', 'BED', 'BEN', 'TEN'])

Comments

Popular posts from this blog

Find Increasing Triplet Subsequence - Medium

Problem - Given an integer array A[1..n], find an instance of i,j,k where 0 < i < j < k <= n and A[i] < A[j] < A[k]. Let's start with the obvious solution, bruteforce every three element combination until we find a solution. Let's try to reduce this by searching left and right for each element, we search left for an element smaller than the current one, towards the right an element greater than the current one. When we find an element that has both such elements, we found the solution. The complexity of this solution is O(n^2). To reduce this even further, One can simply apply the longest increasing subsequence algorithm and break when we get an LIS of length 3. But the best algorithm that can find an LIS is O(nlogn) with O( n ) space . An O(nlogn) algorithm seems like an overkill! Can this be done in linear time? The Algorithm: We iterate over the array and keep track of two things. The minimum value iterated over (min) The minimum increa...

Shortest Interval in k-sorted list - Hard

Given k-sorted array, find the minimum interval such that there is at least one element from each array within the interval. Eg. [1,10,14],[2,5,10],[3,40,50]. Output : 1-3 To solve this problem, we perform a k-way merge as described here . At each point of 'popping' an element from an array. We keep track of the minimum and maximum head element (the first element) from all the k-lists. The minimum and maximum will obviously contain the rest of the header elements of the k-arrays. As we keep doing this, we find the smallest interval (max - min). That will be our solution. Here's a pictorial working of the algorithm. And here's the Python code. Time Complexity : O(nlogk)

The 2 Missing Duplicate Numbers - Medium

This is a slightly trickier version of The Missing Duplicate Number . Instead of one single missing number, we have 2. Problem : Given an array of Integers. Each number is repeated even number of times. Except 2 numbers which occur odd number of times. Find the two numbers Ex. [1,2,3,1,2,3,4,5] The Output should be 4,5. The naive solution is similar to the previous solution. Use a hash table to keep track of the frequencies and find the elements that occur an odd number of times. The algorithm has a Time and Space Complexity of O(n). Say those two required numbers are a and b If you remember the previous post, we used the XOR over all the elements to find the required element. If we do the same here, we get a value xor which is actually a ^ b. So how can we use this? We know that a and b are different, so their xor is not zero. Infact their XOR value has its bit set for all its dissimilar bits in both a and b. (eg.  1101 ^ 0110 = 0011). It's important to notice ...