Skip to main content

Posts

Showing posts from July, 2013

Find the Quadruplets - Hard

Problem - Given 4 arrays A,B,C,D. Find out if there exists an instance where A[i] + B[j] + C[k] + D[l] = 0 Like the Find the Triple problem, we're going to develop 4 algorithms to solve this. Starting with the naive O(n^4) solution. Then we proceed to eliminate the inner-most loop with a Binary Search, reducing the complexity to O(n^3 logn) Now, we replace the last 2 loops with the left-right traversal we did in the previous 3 posts. Now the complexity is O(n^3). Finally, we reduce the complexity to O(n^2 logn) at the cost of O(n^2) Space Complexity. We store every combination of A[i] + B[j] and store it in AB[]. Similarly we make CD[] out of C[i] + D[j]. So, AB = A x B CD = C x D We then sort AB and CD (which costs O(n^2 log(n^2)) ~ O(n^2 logn) ) and then run a left-right linear Algorithm on AB and CD. (Note : Their size is of the order O(n^2)) So the overall complexity is due to sorting the large array of size n^2. which is O(n^2 logn).

Find the Triple - Hard

Problem : Given 3 Integer Arrays A,B,C. Find out if an instance exists where A[i] + B[j] + C[k] == 0. Very deceptive question but very similar to the  3SUM  Problem. The Naive solution is O(n^3). If you're a little clever, you can do a O(n^2 logn). At this point, you might give up assuming that this is pretty efficient. But then there is also a O(n^2) solution as well! Let's go from worst to best. The Naive solution is trivial. Try every combination until we hit a solution, if we don't there is no solution. So let's try to speed things up a bit, since the solution is already O(n^3), I think we can afford to sort any of the  arrays since nlogn = o(n^3). Therefore, we cleverly sort the Array C. Now in the third loop we replace the linear scan with a binary search to find (-A[i]-B[j]). The complexity is now reduced to O(n^2 logn) At this point, you've leveled up. The next algorithm might not be immediately apparent but works. In fact the method is simila...